_ | Hands-On Lab: SQL for Data Analysis

Scenario

You're working as a junior data analyst for an online retail company. You'll be using SQL to

explore and manipulate the company’s Customer, Orders, and Products databases.

Step 0: Create the Database & Sample Tables

-- Create Database
CREATE DATABASE retail_db;
USE retail_db;

-- Create Customers Table
CREATE TABLE Customers (
customer_id INT PRIMARY KEY,
first_name VARCHAR(590),
last_name VARCHAR(50),
city VARCHAR(50),
country VARCHAR(50)

)

-- Create Products Table
CREATE TABLE Products (
product_id INT PRIMARY KEY,
product_name VARCHAR(100),
category VARCHAR(59),
price DECIMAL(10,2)

)

-- Create Orders Table

CREATE TABLE Orders (
order_id INT PRIMARY KEY,
customer_id INT,
product_id INT,



order_date DATE,

quantity INT,

FOREIGN KEY (customer_id) REFERENCES Customers(customer_id),
FOREIGN KEY (product_id) REFERENCES Products(product_id)

€ 4.1 Introduction to Databases: Tables, Rows, Columns,
Keys

Step 1: Insert Sample Data

INSERT INTO Customers VALUES
(1, 'Alice', 'Brown', 'New York', 'USA'),
(2, 'John', 'Smith', 'Los Angeles', 'USA'),

(3, 'Maria', 'Garcia', 'Madrid', 'Spain');

INSERT INTO Products VALUES

(101, 'Laptop', 'Electronics', 1200.00),
(102, 'Smartphone', 'Electronics', 8060.00),
(103, 'Desk Chair', 'Furniture', 150.00);

INSERT INTO Orders VALUES

(1601, 1, 101, '2025-08-81', 1),
(1002, 2, 103, '2025-08-02', 2),
(1603, 1, 102, '2025-88-03', 1);

4 Task: View all customers:

SELECT * FROM Customers;

€ 4.2 Basic SQL Queries



Step 2: SELECT, WHERE, LIMIT, ORDER BY

-- Select specific columns
SELECT first_name, last_name, city FROM Customers;

-- Filter customers from USA
SELECT * FROM Customers
WHERE country = "USA";

-- Show top 2 most expensive products
SELECT * FROM Products

ORDER BY price DESC

LIMIT 2;

.1 Task: Find all orders for customer_id = 1.

@ 4.3 Filtering and Aggregations

Step 3: GROUP BY, HAVING, COUNT, AVG, SUM

-- Count orders per customer

SELECT customer_id, COUNT(order_id) AS total_orders
FROM Orders

GROUP BY customer_id;

-- Average product price per category
SELECT category, AVG(price) AS avg_price
FROM Products

GROUP BY category;

-- Total quantity ordered per customer (only those with more than 1 item)
SELECT customer_id, SUM(quantity) AS total_items

FROM Orders

GROUP BY customer_id

HAVING SUM(quantity) > 1;



1 Task: Find total sales amount per customer.

@ 4.4 Joins and Subqueries

Step 4: INNER, LEFT, RIGHT, FULLJOIN

-- Inner Join to see order details with customer names
SELECT o.order_id, c.first_name, p.product_name, o.quantity
FROM Orders o

INNER JOIN Customers ¢ ON o.customer_id = c.customer_id
INNER JOIN Products p ON o.product_id = p.product_id;

-- Left Join: Show all customers even if they have no orders
SELECT c.first_name, o.order_id
FROM Customers c

LEFT JOIN Orders o ON c.customer_id = o.customer_id;

1 Task: Use a subquery to find customers who ordered products in the “Electronics”

category.

SELECT DISTINCT first_name, last_name
FROM Customers
WHERE customer_id IN (
SELECT customer_id FROM Orders
WHERE product_id IN (
SELECT product_id FROM Products
WHERE category = 'Electronics’

@ 4.5 Data Manipulation



Step 5: INSERT, UPDATE, DELETE

-- Insert a new product

INSERT INTO Products VALUES (104, 'Office Desk',

-- Update product price
UPDATE Products

SET price = 1300.00
WHERE product_id = 101;

-- Delete an order
DELETE FROM Orders
WHERE order_id = 1003;

'"Furniture', 250.00);

.4 Task: Add a new customer, then place an order for them.

@ Lab Completion

By completing this lab, students will:

Understand database structure

Write basic and advanced queries

Perform aggregations and joins

Apply real-world SQL skills to analysis

Manipulate data with INSERT, UPDATE, DELETE



