


#### Management in dairy herds



This have been overlooked in organic dairy production

#### Interactions between genetics and production systems



Feeding







**INTERACTIONS** 



Selection intensity





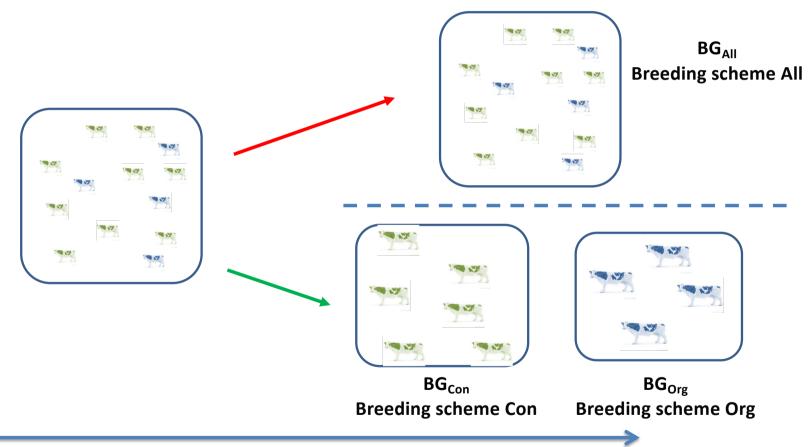


**Production systems** 



**Products** 

Breeding goal (traits included, weighting of traits, recording)


Breeding scheme (progeny testing, genomic selection)

**Technologies** (MOET, IVF, sexed semen)

## **Current status – organic dairy breeding**

- Most genetic material originates from 'conventional' breeding schemes
- Some organic farmers select sires based on customized farm indices
- 'Organic' breeding schemes have not been used on a large scale

## **Specific organic breeding lines?**



5

# Specific organic breeding lines? Depending on:

- Differences in breeding goal weights
- Possible G by E interactions
- Public regulations
- Based on above figures correlation between breeding goals can be calculated

## **Example of regulations:** From "Regulation (EU) 2018/848"

#### Page 61:

"With regard to the breeding of organic animals:

(a) reproduction shall use natural methods; however, artificial insemination shall be allowed:

(b) reproduction shall not be induced or impeded by treatment with hormones or other substances with a similar effect, except as a form of veterinary therapeutic treatment in the case of an ʻindividual animal:

(c) other forms of artificial reproduction, such as cloning and embryo transfer, shall not be used:

(d) the choice of bréeds shall be appropriate to the principles of organic production, shall ensure a high standard of animal welfare and shall contribute to the prevention of any suffering and to avoiding the need for the mutilation of animals.

When choosing breeds or strains, operators shall consider giving preference to breeds or strains with a high degree of genetic diversity, the capacity of animals to adapt to local conditions, their breeding value, their longevity, their vitality and their resistance to disease or health problems, all without impairment of their welfare.

In addition, breeds or strains of animals shall be selected to avoid specific diseases or health problems associated with some breeds or strains used in intensive production, such as porcine stress syndrome, possibly leading to pale-soft-exudative (PSE) meat, sudden death, spontaneous abortion and difficult births requiring caesarean operations. Preference shall be given to indigenous breeds and strains

#### How to interpretate that:

- No MOET/OPU at organic farms?
- No use of sires born through MOET/OPU?
- No animals in the pedigree born through MOET/OPU?

#### How to interpretate that:

- 1) Can semen from International unadapted breeds be used?
- 2) Can semen from International adapted breeds be used? - e.g. Holstein Jersey
- 3) Can breeds adapted for large areas (DK, SV, FIN) be used?
  - e.g. VikingRed

# Goal for the level of organic production in EU

**EN 2024** 

19

Special report

Organic farming in the EU

Gaps and inconsistencies hamper the success of the policy

#### **Executive summary**

Organic farming is an agricultural method to produce food using natural substances and processes, contributing to greater biodiversity and less water, air, and soil pollution. The Commission considers it a key tool for making agriculture more sustainable and set the target of having 25 % of the EU's agricultural land organically farmed by 2030 − a significant jump from 10.5 % in 2022. In the 2014-2022 period, farmers received around €12 billion in support of organic farming practices under the common agricultural policy.

## Overall project goal in Ø-Ko-Avl

To develop a breeding program adapted to organic dairy production and consumer preferences

#### Through

- Definition of an organic breeding goal based on
  - Economic models
  - Economic model + Preferences among consumers, dairy companies and farmers
- Cost benefit analyses of optimized breeding schemes
- Establishment of a separate organic breeding line for VR (VikingRed)

YouTube link (2m33s)

Facebook link (1m15s)

## Work packages in Ø-Ko-Avl

#### WP I Consumer preferences and willingness to pay for an organic WP 2 breeding plan Definition of an organic breeding goal by derivation of economic values WP 3 WP 4 Implementation of an organic breeding Optimize an organic breeding goal & an organic breeding program program Establish an organic breeding council and perform "Cost-benefit"-analyses

# Partners in Ø-Ko-Avl

**AU-UNIVET** 



**AU-FOOD** 



















### What do consumers want from organic breeding?

**Presentation at EAAP 2025 (Innsbruck)** 

What Breeding Goal Should Organic Dairy
Farmers Pursue? - Results from a
Willingness-To-Pay (WTP) Study Among
Consumers in Denmark, Germany, and
Sweden

T. B. Lund<sup>1</sup>, T. Christensen<sup>1</sup>, S. Denver<sup>1</sup>, S. B. Olsen<sup>1</sup>, H. M. Nielsen<sup>2</sup>, M. Kargo<sup>2</sup>, P. Sandøe<sup>1,3</sup>

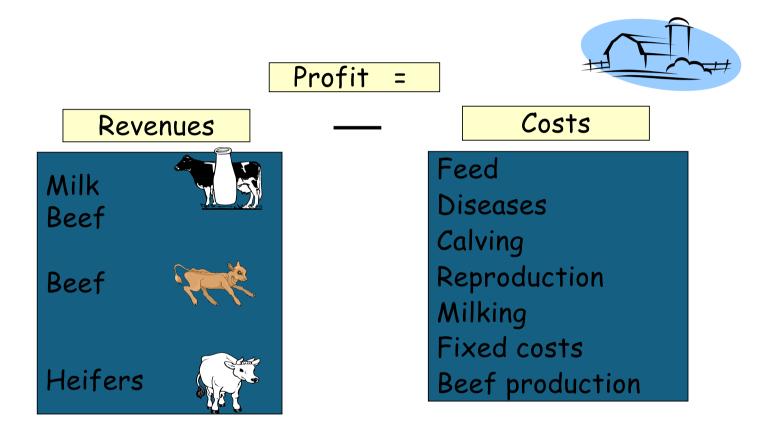
<sup>1</sup> Copenhagen University, Dept. of Food and Resource Economics, Rolighedsvej 23, 1958 Frederiksberg, Denmark,

<sup>2</sup> Aarhus University, Center for Quantitative Genetics and Genomics, C. F. Møllers Allé 3, bld. 1130, 8000 Aarhus, Denmark,

<sup>3</sup> Copenhagen University, Dept. of Veterinary and Animal Sciences, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark



## In all countries, and for both products, the *average organic* consumer is willing to pay the most for WELFARE


## Percentage price premiums compared to the standard price of organic milk or cheese

|                         | Denmark |        | Sweden     |        | Germany |        |
|-------------------------|---------|--------|------------|--------|---------|--------|
|                         | Milk    | Cheese | Milk       | Cheese | Milk    | Cheese |
| Higher yield            | 2%      | -3%    | <b>7</b> % | 0%     | 0%      | 0%     |
| Better animal welfare   | 37%***  | 36%*** | 59%***     | 66%*** | 54%***  | 62%*** |
| Reduced climate impact  | 15%***  | 4%     | 10%*       | 17%**  | 11%**   | 12%    |
| Healthier milk and meat | 13%***  | 14%*** | 18%***     | 23%*** | 36%***  | 35%*** |

Across the studied countries, products and consumer groups: Animal welfare is considered the most important breeding goal



#### **Derivation of economic values**



To be derived by use of SimHerd, Østergård et al, 2016 (Livestock Science)

#### **Production circumstances**

Economy

(Prices of products and

production factors )

Consumer preferences,
Political and
social circumstances

Breeding goal

Production circumstances should be relevant when genetic improvement is expressed





### Our farmer user group defined possible future systems

|                      | ØКО                                                                   | ØKO+                                                       | ØKO++                                                                                         |
|----------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Focus                | Efficiency<br>Improvement<br>within current<br>organic<br>regulations | Biodiversity<br>High self-sufficiency<br>Minimal transport | Biodiversity<br>Minimal transport<br>Home grown feed<br>"Naturalness"<br>"Max" animal welfare |
| Yield level (kg ECM) | 12000<br>3xmilking.                                                   | 9000<br>AMS                                                | 6000<br>2xmilking                                                                             |
| Calvings             | All year round                                                        | All year round                                             | In spring                                                                                     |
| Reproduction         | Sexed and conventional semen plus Intensive beef breeds               | Sexed and conventional semen plus Extensive beef breeds    | Sexed and conventional semen plus Extensive beef breeds                                       |
| BonD calves          | Sold at the age of 1 month                                            | Reared at the herd                                         | Reared at the herd                                                                            |

### Our farmer user group defined possible future systems

|                       | ØKO                                | ØKO+                                                            | ØKO++                                                               |
|-----------------------|------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|
| Herd size             | 500                                | 150                                                             | 75                                                                  |
| Feeding               | 60% Rouhage<br>40% Concentrate     | 70% Rouhage<br>30% National concentrate<br>90% Self-sufficiency | 100 % Grass/ silage/wrap<br>No concentrate<br>100% Self-sufficiency |
| Antibiotica           | Allowed According to organic roles | Allowed According to organic roles                              | NO, but sick animals have to treated -> Sold                        |
| Cow -calf interaction | 1 day                              | 3 days                                                          | With mother or nursing aunt in 3 month                              |

# How to include results from consumer surveys in the breeding goal?

• Animal welfare: Mastitis, easy calvings, behavior

Economic value based on "economy" already included Only based on saved cost for vets and farmer workload

- Reduced climate impact: methane
- Healthier milk and meat: Eg. Fatty acid composition

## Method to include consumer preferences in BG – an example

FV = Consumer value for mastitis and calving ease - ekstra on top of the pure economy value



## Slagboom et al., 2020

Assessing different breeding strategies for organic dairy production

- Breeding goal differences
- Embryo transfer
- Selection of conventional bulls



## Methods

#### Breeding goal

- Traits: milk production, mastitis, cow fertility
- Economic values for Holstein
- NTM conventional and NTM organic
- Match correlations sub-index NTM

GxE estimates from Denmark (0.94 - 0.97)

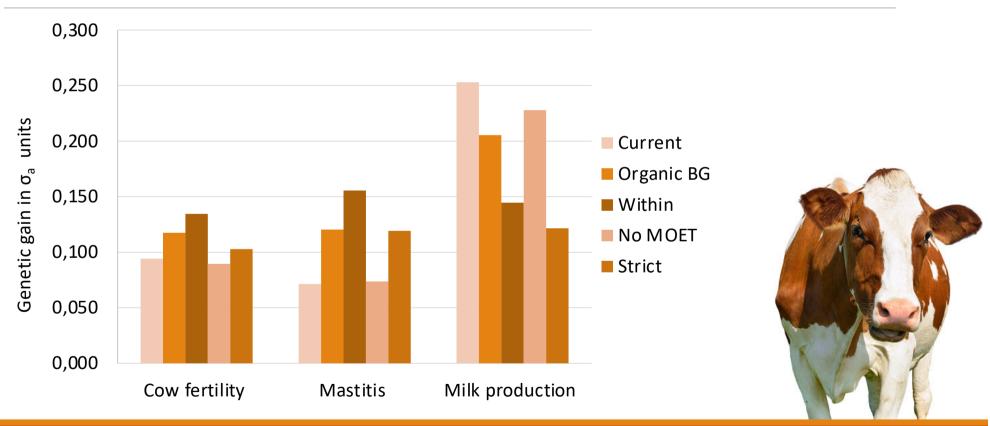
Five scenarios



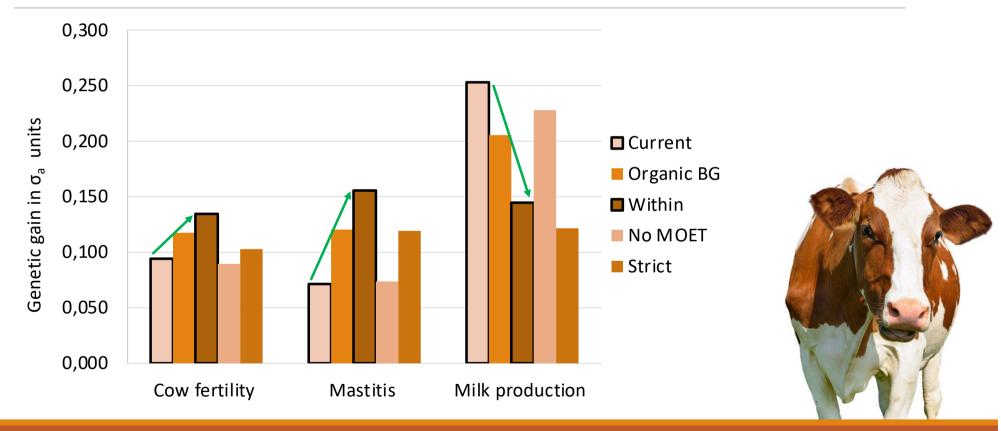
## Scenarios

| Scenario   | Breeding goal | Embryo transfer<br>(MOET) | Selection of conventional bulls |
|------------|---------------|---------------------------|---------------------------------|
| Current    | Conventional  | Yes                       | Yes                             |
| Organic BG | Organic       | Yes                       | Yes                             |
| Within     | Organic       | Yes                       | No                              |
| No MOET    | Organic       | No                        | Yes                             |
| Strict     | Organic       | No                        | No                              |

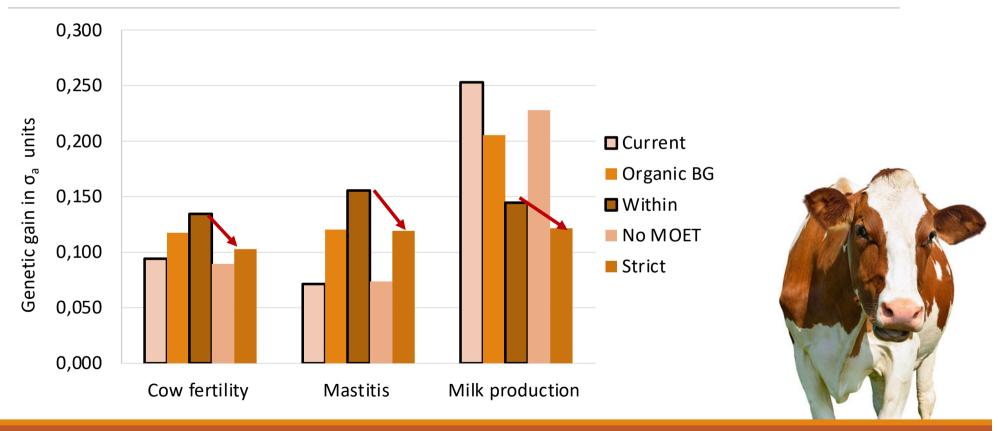



## Relative total economic gain

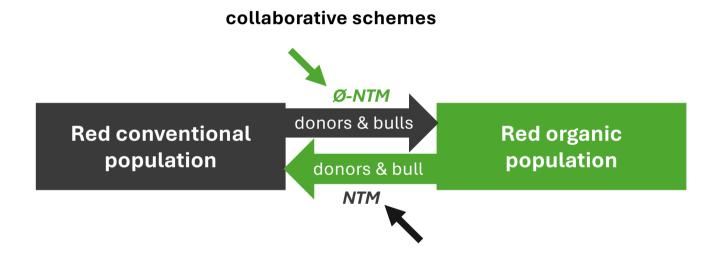
|                                    | MOET in the organic | No MOET in the organic |
|------------------------------------|---------------------|------------------------|
|                                    | breeding program    | breeding program       |
| Selection of conventional bulls    | 101%                | 93%                    |
| No selection of conventional bulls | 96%                 | 76%                    |


Relative to genetic gain in scenario current (=100%)




## Genetic gain per trait




## Genetic gain per trait



## Genetic gain per trait

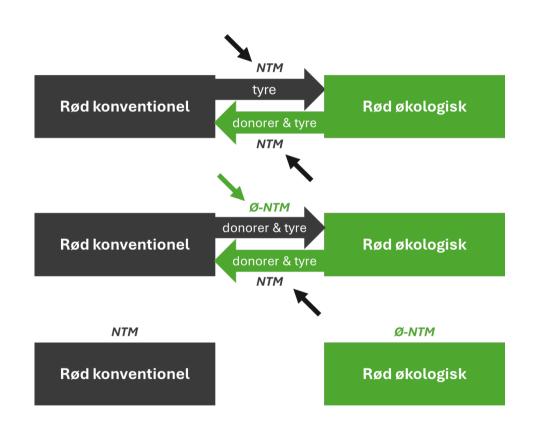


# Breeding schemes we will test with new breeding goals derived in WP2

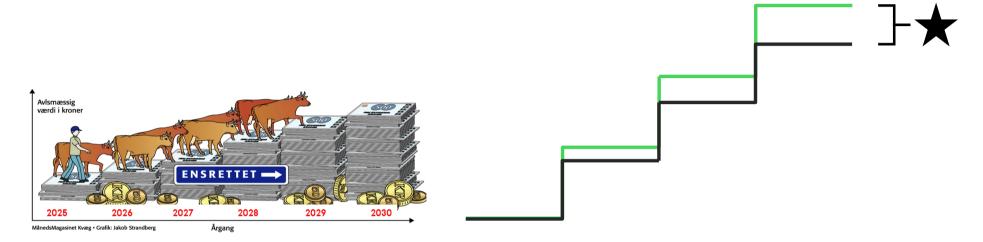


By use of an organic breeding goal (Ø-NTM) and a conventional breeding goal NTM)

# Breeding schemes we will test with new breeding goals derived in WP2


No collaboration between breeding schemes

Red conventional population Population


By use of an organic breeding goal (Ø-NTM) and a conventional breeding goal (NTM)

### What we also will investigate

- Different correlations between breeding goals( NTM, Ø-NTM )
- Different # of donors and bulls in the breeding schemes
- Use of MOET/OPU or not
- Different sizes of the organic population



### Outcome from an organic breeding plan



**Black line:** Value of genetic gain from a conventional breeding plan among organic producers

**Green line**: Value of breeding progress from an organic

breeding plan among organic producers



How many organic cows are needed for paying the cost for running an organic breeding plan?

### Take home message

- If the organic community want to have animals suited for organic production systems specific lines/breeds are needed
- If the organic community want to follow EU regulations specific lines/breeds are needed
- Use of MOET/OPU in organic dairy breeding schemes needs to be considered
  - Pros: Larger genetic progress in the "organic" direction"
  - Cons: MOET/OPU is debatable from an organic perspective
- In case some one are interested in the project or wants to collaborate please contact me: morten.kargo@qgg.au.dk

### Thank you for your attention

#### Why VR as our case breed?

- · Want to live
- Healthy
- Perfect in size
- Produce milk with high value
- High value from slaughter
- Simple and problem free
- Robust and alert
- Feed efficient
- Good feet and legs
- · Good udders and udder health
- Grow and milk on roughage
- Same bottom-line (as Holstein) different composed







**VR ambassadors!** 





