

Sustainable management of apple orchards: canker, scab, replant

Dr Matevz Papp-Rupar,

NIAB, East Malling, ME19 6BJ

Today's Agenda

- Apple canker Neonectria ditissima
 - Managing Infection cycle
 - Biocontrol
 - Soil amendments
- Apple scab Venturia inaequalis
 - Inoculum sources / reduction practices
 - Novel control programmes
- Apple replant disease multiple causes
 - Planting location
 - Rootstock rotation
 - Soil amendments

European apple canker - Neonectria ditissima

The problem:

- Killing trees up to 30% in the first 3yrs of newly planted orchards
- Reducing yield, quality and orchard longevity
 - Causing postharvest fruit rot
- Commercial apple cultivars are highly susceptible.
 - High density planting
- Difficult to control:
 - Reductions and bans of effective chemical products
 - Timing issues (leaf scars, picking wounds, rain...)
 - Orchard hygiene is labour intensive expensive / unavailable
 - Climate change

Weber, R. Commercial fruit growing 56, 95-107 (2014)

European apple canker – infection spread

INFECTION SOURCE = cankers on trees!!!

- Conidia
 - produced on <u>young and old</u> cankers
 - If you see canker → producing spores
 - Rain splash dispersed
 - Within and between neighbouring trees/rows
- Ascospores = sexual stage
 - produced on old cankers
 - 3-6+ months after infection
 - wind dispersed! → long distance spread!
- In NZ (UK) climate both spores are produced all year around!
 - 30 min of rain (2 mm) = 1000-10,000 spores per mm of canker length
 - 5-10 spores required for infection!!!
- Alternative inoculum sources:
 - Apple fruit, wind breaks, <u>pruning material</u>, <u>nursery</u>

European apple canker – infection spread

- Infection points are wounds → present all year around!
 - Pruning wounds
 - Petal scars
 - Growth cracks
 - Lenticels
 - Picking wounds
 - Leaf scars
- Inoculum all year around + wounds all year round = constant chance of infection
 - In UK climate: 1 canker in orchard will result in 100% trees with canker in 6-7 years if left completely unmanaged
 - Not necessarily true for Sweden

Canker management

• YOU CAN NOT SPRAY CANKER AWAY !!!!! !!!

- No fungicide can kill cankers or stop them sporulating
 - 1 mm of canker = 1000 potential infections
- Leaf scar protection is possible with Captan/Tebuconazole at high rate and water volumes (800-1000l/ha) if:
 - Timed correctly (20, 50, 80% leaf fall)
 - Low inoculum load
- Scab sprays may partly control petal scar infections
- Picking and pruning wounds are impracticable to target and protect

Canker management - CUT CANKERS OUT!

WHEN to remove (any sunny day – never in the rain)

FOUR dedicated canker walks a year (in order of importance):

1) Pre-picking / during picking

• Removes inoculum for picking wounds and leaf scars

2) After harvest / pre-leaf fall

- Removes inoculum for leaf scars, pruning wounds and winter cracks
- In combination with leaf fall sprays for increased efficacy

3) Mid-winter tidy up

- Identify hot spots for spring walk
- 3 strikes you're out
- Use Pruning Paints to protect every cut

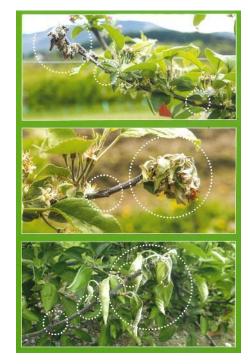
4) Spring clean

- Autumn infections will start to show at bud burst/flowering
- Can express as late as July

Canker management - CUT CANKERS OUT!

WHAT to remove

Look for Small dark brown sunken area



Look for Flaky bark on canker

Look for
Old cankers are black and
sunken, with cracked rings

Extra training / supervision of staff
Canker champions
Hot spots marking
Canker bounty at low canker counts

Canker management - CUT CANKER OUT!

HOW to remove:

You must apply commercial pruning paint to all pruning cuts to kill spores

Always remove infected wood from orchard and burn. Cover until burnt

Routine tool hygiene required if pruning out European canker. If pruning out Fire blight at the same time, you must follow Fire blight sterilisation rules

Don't prune in the rain

- Protect all cuts
- Remove and destroy infected and healthy looking cuttings!!
 - chipping with commercial composting also effective
- Keep cuttings dry to prevent sporulation!
- Remove / grind out trunk cankers.
- Remove trees with more than 2-3 mainstem cankers
- Mark hotspots for easier monitoring

Other known management factors

Nutrition:

- High nitrogen in the soil or as post-harvest foliar application will lead to increased canker.
 - Addition of as little as 50kg/ha of urea as soil application will increase canker incidence and lesion size (Harteveld 2021)
 - Any source of nitrogen will make canker worse (NZ)

Nursery infections = mainstem cankers in year 1-3

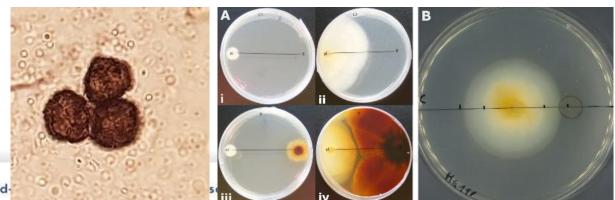
- NZ data show 2-5% trees come with canker, latent expressions
- Increase monitoring/removing in the first 3 years = canker control
- Stop canker in its tracks!!!

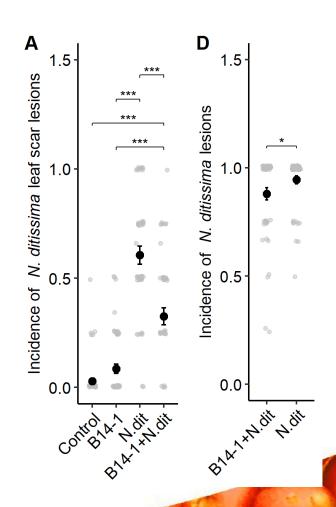
Photo: M. Papp-Rupar

Biocontrol Protection Products: field trial

Treatment code	Active	All rasp wounds		Naturally infected rasp wounds		Artificially infected rasp wounds		Leaf/bud scars		Pruning wounds	
		Canker incidence	SE	Canker incidence	SE	Canker incidence	SE	Canker incidence	SE	Canker incidence	SE
Water	Water	35.0%	4.0%	10.8%	2.4%	51.4%	3.7%	1.9%	0.8%	19.6%	2.6%
Standard	Captan/ tebu. / captan	15.7%	3.1%	1.9%	1.0%	33.2%	3.4%	0.7%	0.5%	13.9%	2.2%
BCA1) (AHDB9788)	Trichoderma	20.1%	3.3%	3.7%	1.4%	39.3%	3.5%	2.3%	1.0%	14.2%	2.2%
BCA2 (AHDB9694)	Aureobasidium	34.7%	4.0%	9.3%	2.2%	53.3%	3.6%	1.8%	0.8%	18.9%	2.5%
BCA3 (AHDB9712)	Clonostachys	23.0%	3.5%	4.3%	1.5%	42.1%	3.6%	1.2%	0.6%	16.1%	2.4%
PE1 (AHDB9712)	Plant oil	27.9%	3.6%	9.3%	2.2%	41.8%	3.6%	1.9%	0.8%	16.0%	2.3%
PE2 (AHDB9852)	Plant extract	25.2%	3.7%	4.4%	1.5%	46.2%	3.6%	1.9%	0.8%	16.9%	2.4%
CF2 (AHDB9862)	New azole product	22.9%	3.9%	2.3%	1.1%	49.6%	3.7%	1.0%	0.5%	17.6%	2.5%

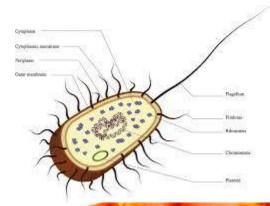
Current biocontrol agents applied at leaf fall / during picking do not control canker


Aligned with evidence from NZ – Walter et al. (2017)


- New Zealand Plant Protection 70: 63-72 (2017)
- Bacillus, Pseudomonas, Trichoderma, Salicylic acid

Novel microbial amendments against canker

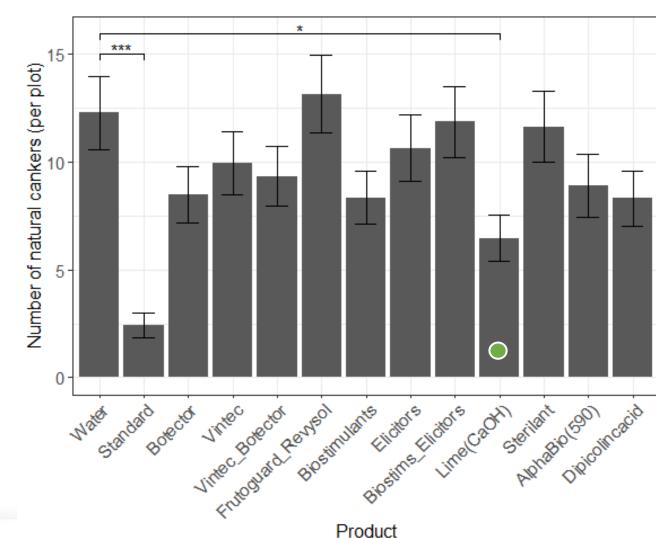
- Apple endophytes microbes in the trees a novel strategy to increase the resilience against canker
- We have found fungal endophyte **Epicoccum nigrum:**
 - More abundant in resistant apple cultivars
 - Reduced leaf scar (50%) and pruning wound (5%) infections when co-inoculated in field trial
 - Transiently colonised apple tissues
 - Not causing growth penalty, nor symptoms on fruit / leaves.
 - Known for biocontrol potential in the literature



Novel microbial amendments against canker

- Beneficial bacterial endophytes from <u>Sphingomonas</u> genus
 - Bacterial communities in apple are more stable than fungal
 - Changing less in abundance and composition across seasons
- Sphingomonas strains
 - Higher abundance in resistant compared to susceptible apple cultivars
 - Across 2 years and 3 sites in Kent, UK
 - High Sphingomonas abundance → higher canopy health (less canker)
 - Known to promote plant growth and pathogen tolerance

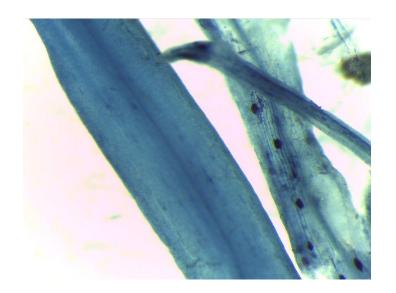
https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Sphingomonas_phyllosphaerae_Alan.jpg/375px-Sphingomonas_phyllosphaerae_Alan.jpg


https://doi.org/10.1016/j.ijid.2018.09.021

Potential organic spray "product"

Hydrated lime (CaOH):

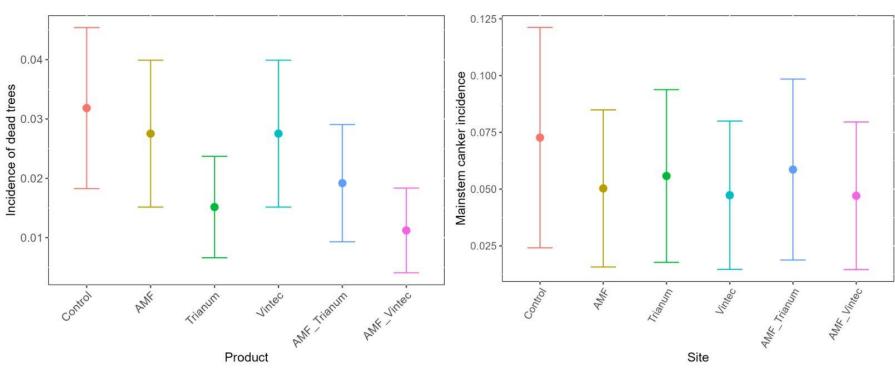
- 50 kg/Ha in 300L/Ha (1 year old trees)
- Building grade hydrated lime
- 3 sprays applied at 20, 50 and 80 % leaf fall
- Used in The Netherlands through frost protection sprinklers
- Used in NZ organics
- Fresh material essential (pH 13+)
- **Protected natural leaf scar infections**
 - **Peripheral cankers**
- Not protecting larger rasp wounds
- Difficult application / particle size



Soil amendments for canker resilience

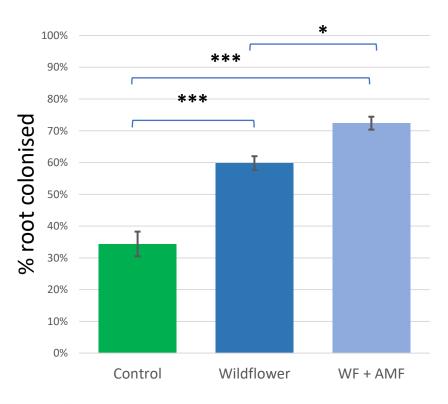
- Arbuscular mycorrhizal fungi AMF :
 - Improve drought tolerance (Wu et al., 2015)
 - Waterlogging tolerance (Tuheteru&Wu, 2017)
 - Reduced the severity of Botryosphaeria canker (Krishna et al., 2010) and Neonectria canker in cider apple (Berdeni et al., 2018).
 - Improve **P uptake** (Peng et al., 2015)
- Trichoderma species:
 - Improve plant growth and disease resistance (Szczałba et at., 2019)
 - Control canker on almond (Holland et al., 2021)

Amendment at planting?
Amendment of mature orchards?



AMF / Trichoderma amendment at planting

- Small (not sig.) positive effect of AMF and Trichoderma across 6 commercial orchards
 - Lower tree mortality
 - Lower mainstem canker

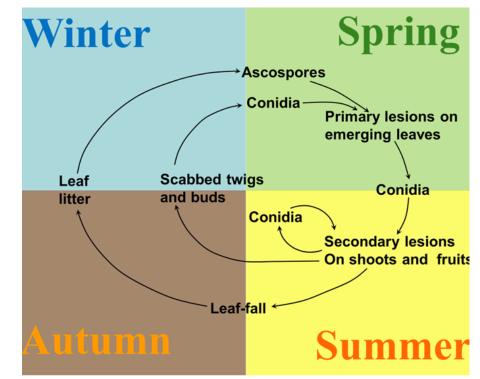


AMF enrichment in mature orchards

- Wildflowers = increased AMF interaction / AMF abundance
- WF seed + commercial AMF = additional benefit

Introduction of wildflowers or

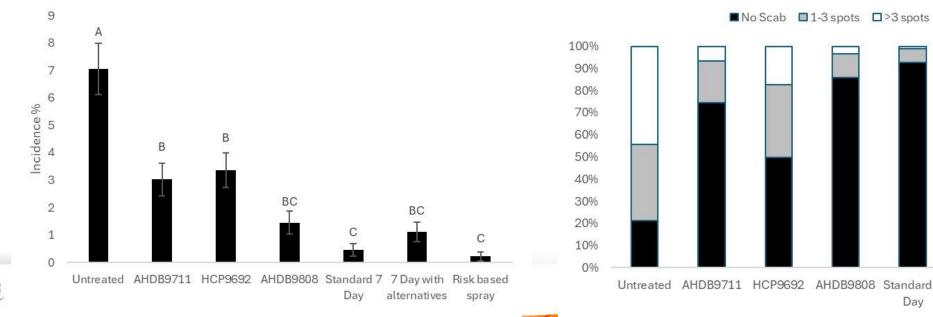
Wildflowers with additional AMF


Increase AMF in the orchards

Transmission of AMF from WF to apple roots not confirmed yet

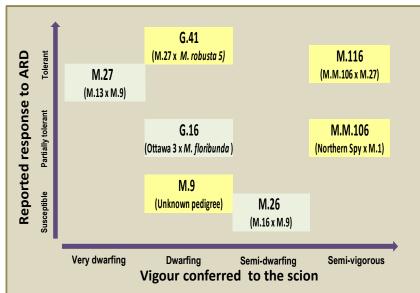
Apple scab

- Inoculum
 - Ascospores Primary
 - Overwinter in leaf litter
 - Released by water, air dispersal
 - Conidia Primary/Secondary
 - Overwinter in buds (?)
 - Dispersed by water splash
 - 20-50% contribution to primary inoculum in UK (Passey, 2017)
- Resistant varieties
- Orchard hygiene!
- Leaf degradation
 - Trichoderma
 - Orchard ground cover
- Timed ascospore release in dry weather(?)



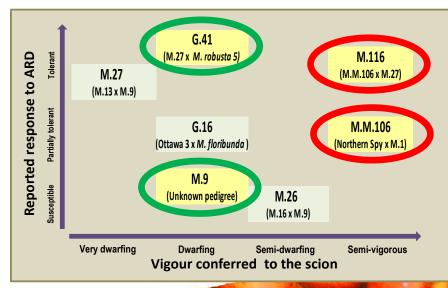
New control programmes against apple scab:

- Conventional scab programme = 15 20 spray applications
 - Loss of available chemistry / Resistance break down
- Majority of conventional pesticides replaced by:
 - Elicitor with metal component AHDB9711
 - Elicitor HCP9692
 - Inorganic Compound AHDB9808
- Scab incidence on leaves and fruit comparable to standard
 - 9/12 fungicide applications replaced with alternative products
- Risk based approach (Rimpro) can also help reduce pesticide use (3/12)



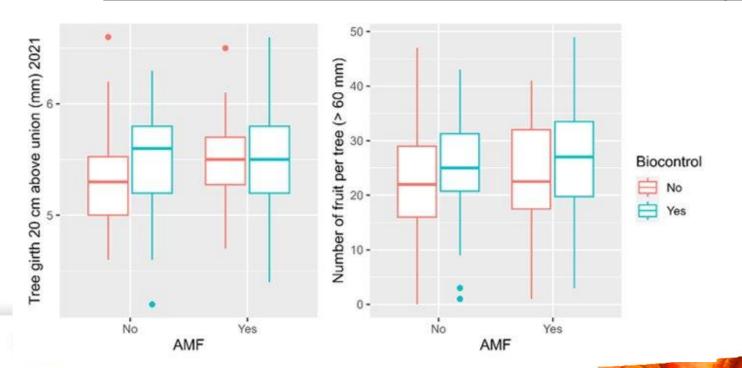
Apple replant disease

- Poor establishment and growth of apple trees in soils where the same (apple), or a closely-related species, has grown previously
- Complex causes:
 - Rhizoctonia, Cylindrocarpon, Phytophthora and Pythium
 - Relative importance varies with sites
 - Nematodes can exacerbate ARD
 - Rootstocks differ in their susceptibility to ARD
 - **Decreased** prevalence of **beneficial microbes** (including AMF, *Trichoderma* and *Bacillus*)
- ARD trees start bearing fruit up to 2-3 years later
 - yields reduced by up to ~60% during the commercial life
 - Inconsistent in the orchards



ARD management

- Rotating alleyway / tree row?
 - Different microbiome in the aisle
 - Normal tree growth in the aisle
 - In tree row between planting stations?
- Rotating rootstocks?
 - MM106 orchard replanted by:
 - M9, M26, MM106, M116, M27, G16, G41, EMR01
 - Most severe ARD in MM106 and M116
 - Most related to the previous rootstock
 - Least severe ARD in M9 and G series
 - Less related to MM116



Soil amendments against ARD

- Individual/combinations of beneficial soil microbes to improve tree establishment:
 - AMF / Plant growth promoting rhizobacteria (PGPR) / Trichoderma Biocontrol
 - AMF and Trichoderma but not PGPR can partially mitigate ARD

Take home messages:

- Canker:
 - Remove all infected material

 out of the orchard
 - Current chemical and biocontrol agents not effective
 - New biocontrol is being developed
 - Improvement of the soil and orchard ground cover
 - AMF, Trichoderma, Wildflowers
- Scab:
 - Remove / degrade primary inoculum
 - Alternative control with elicitors (etc.) possible
- Replant:
 - Rotate alleyway / tree row planting
 - Rotate rootstock cultivar rootstock relatedness!
 - Improve soil microbiome
 - AMF and Trichoderma

Acknowledgments

- Funders: Growing Kent and Medway, Innovate UK, AHDB, BBSRC, BAPL and apple industry partners.
- Apple growers from AM Fresh, Worldwide Fruit, Adrian Scripps and Agrovista.
- Frank P. Matthews tree nursery
- Thanks to Louisa Robinson, Xiangming Xu, Tom Passey, Greg Deakin and NIAB Pathology team for trial establishment, monitoring and assessments of trials.

Thank you for listening!

Questions?

