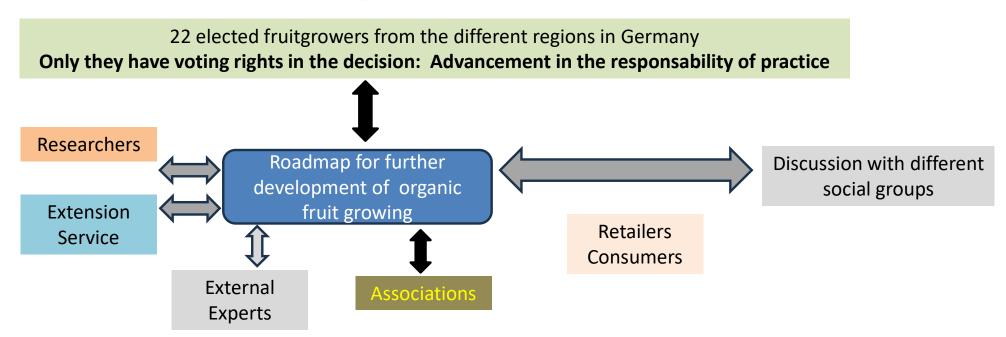


The future of organic orchards Current discussion in Germany

Jutta Kienzle

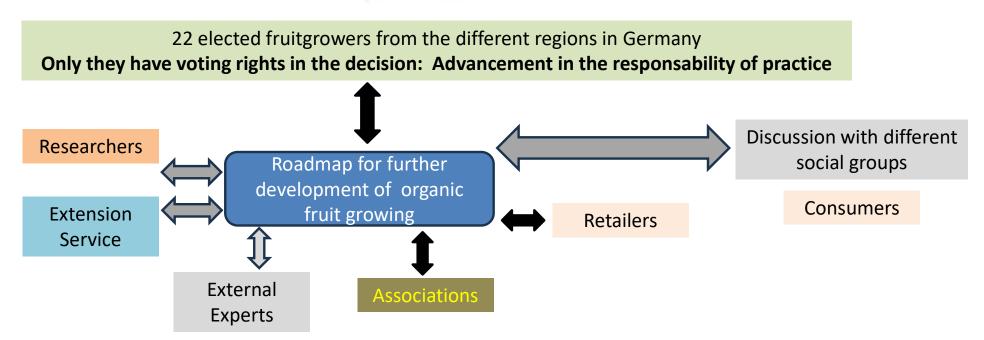
Gefördert durch

aufgrund eines Beschlusses des Deutschen Bundestages



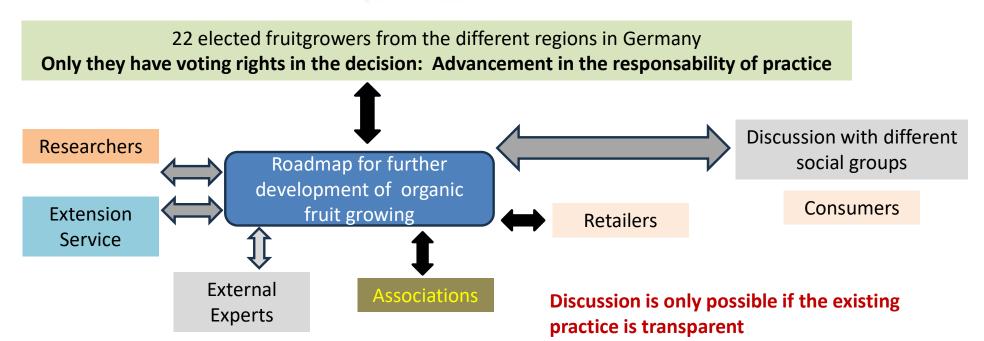
The Structure: The network to improve organic fruit growing Way forward in a system approach in close collaboration of practice, research, extension and organic associations:

Responsible body of the network


The building of the structure was financially supported by BÖL (Projects 2810 OE178 and 2815OE100)

The Structure: The network to improve organic fruit growing Way forward in a system approach in close collaboration of practice, research, extension and organic associations:

Responsible body of the network


The building of the structure was financially supported by BÖL (Projects 2810 OE178 and 2815OE100)

The Structure: The network to improve organic fruit growing Way forward in a system approach in close collaboration of practice, research, extension and organic associations

Responsible body of the network

The building of the structure was financially supported by BÖL (Projects 2810 OE178 and 2815OE100)

The Roadmap: Plant Health Care in Organic Fruit Growing

- Collection and preparation of data from practice understand reality in practice
 Discussion in the network based on these data
 - Where are problems to be solved more stability in yields and more resilience in the cultivation system?
 - Where is need to adapt the cultivation system better to the principles of organic farming?
 - → Identify weaknesses and adjustment screws for an improvement
- Discuss approaches for the development of innovations to achieve the improvement
 - → Identify options and need for action
- Develop innovations in close collaboration of practice, extension service and researchers und introduce these in practice with a pyramid scheme. Thematic Working Groups in the Network
- Observe the real adaption of the innovation in practice in the data collection

Important: We donot aim to bring all farmers to one "best practice scheme"! We aim to develop a high diversity of strategies!

Publication of the Roadmap: www.poseidon.foeko.de

Fruchtschalenwickler (Adoxophyes orana)

Der Fruchtschalenwickler durchläuft als einzige Art zwei Generationen im Jahr und überwintert als junge Larve. Es sind also dreimal jährlich Larven vorhanden: im Herbet die jungen Larven, die dann ins Winterguartier gehen und im Frühjahr wieder zu finden alnd, und im Sommer die Larven der Sommergeneration. Der Hauptschaden wird durch die Herbstlarven verursscht, die kleine offene Fraß. schäden an den reifen Früchten verursschen, die nicht mehr verkorken und schneil feulen.

Niedrige Populationen werden tolerlert. Im Frühjahr erfolgt eine visuelle Kontrolle der Triebe, um die Höhe des Befalls abzuschätzen. Im Sommer wird denn der Falterflug durch Pheromonfallen kontrolliert. Wird hier eine stärkere Flugektivität beobechtet, erfolgt eine zweite visuelle Kontrolle der Triebagitzen im Sommer, Treten höhere Populationen auf wie es seit einligen Jahren vermehrt der Fall ist können. allerdings direkte Regulierungsmaßnahmen erforderlich werden, um hohe Emteschäden zu vermeiden. Zur Verfügung stehen im Öko-Obatbau ein Granufovirus, das hochspezifisch nur auf den Pruchtscheienwickler wirkt (Capex® 2) und Präperste auf der Basis von Bacillus thuringionsis (Bt). In beiden Fällen wird eine zweimalige Applikation empfohlen.

Als natürliche Genenscieler sind beim Fruchtschalenwickler nicht nur Vögel, sondern vor allem auch Schlupfwesgen (Parasitolde) von großer Bedeutung. Bei mehrjährigen Unterauchungen im Rahmen des BÖLN-Projekta INSEKTDEKOOBST (FKZ 28150E074/116/117) zum Paraaltoidenapektrum wurde Im Bodenseeraum vor allem die Ichneumonide Toloutaca striata Grav, gefunden während an der Niedereibe eine hohe Parasitierung durch T. striata und Motoorus interious Nees beobechtet wurde. Das Potential der Parasitolde wird optimal genutzt, wenn das spezifische Granulovirus eingesetzt wird, da bei diesem Präparat die Lanven erst in den letzten Lanvenstadien absterben, so dass sich die meisten Schlupfwespen in der Larve noch vollständig entwickeln können. Das Prägerat ist also sehr nützlingsschonend und verschiebt das Nützlings-Schädlings Verhältnis zugunsten der Nützlinge.

Im Jahr 2017 kam es am Bodensee in mehreren Anlagen zu sehr hohem Befall mit Fruchtschalenwickler. Während in den Vorjahren vermehrt eine Mehrfachen-wendung von Bt-Prägeraten gegen die Sommergeneration empfohien wurde, wurde dann verauchsweise nur das snezifische Granulovirus eingesetzt. Ab 2018 erfolgte der Einsetz dann im Rahmen des Projekts INSEKTOEKOOBST in ersten Versuchen in Kom bination mit der Verwirrmethode isomate® DLR MAX TT.

Mit der Notfallzulassung des Verwimpgeverfahrens lasmate® CLR MAXITT in Kombination mit der Anwendung von Capex® 2 und der Förderung und Schonung der Parasitolide hat sich hier inzwischen ab ein Verfahren etabliert, mit dem das derzeitine Snektrum der Schalenwickler, das derzeit weltnehend aus dem Fruchtschalenwickler A. orang und lokal noch dem Lederfarbenen Schalenwickler Pandomis haparana besteht, sehr gut und insektenschonend reguliert werden kann.

Von 2014 bis 2019 sieht man je nach Region eher einen Rückgang der mit Bt-prägeraten behandelten Pläche und eine Erhöhung der mit Capex® 2 behandelten Flächen. Maßnahmen zur Reduktion des Triebwechstums (Sommerschnitt / Sommerriss) werden vor allem an der Niedereibe und am Bodensee praktiziert, wo auch die wichtinsten Befellalegen eind. Mit der Notfellzulassung von lagmate® CLR MAX TT zur Verwirrung des Schalenwicklers im Jahr 2020 wurde dieses Prägerst sofort auf großen Flächen eingesetzt. Aufgrund von apäter Zulassung und Liefergrobiemen, die durch die Covid-19-Situation noch verstärkt wurden, konnten nicht alle interessenten in 2020 das Prägerst erhalten, daher ist ein Schwerpunkt en der Niedereibe, wo die Lieferung am einfachsten war, zu erkennen.



Abbildungen: Einsetz der verschiedenen Maßnehmen zur Regullerung des Schalenwicklers: Aufwandmengen (bei Blacklus thuringiens)s ab Ende Bildte auf des Handelegrägerst XenTari bezogen) und Anzehl Applikationen bla Ende Blüte und nach der Blüte bei Cagex[®], nur nach der Blüte bei Bacillus thuringiensis (aben). Behandelte Fläche für die jeweiligen direkten und Indirekten Maßnehmen (nur nach der Blüte bei Bacillus thuringionsis) (Mitte und unten).

Copex 2 ob Ende Biller

Strategieansätze in der Weiterentwicklung des Anbausystems

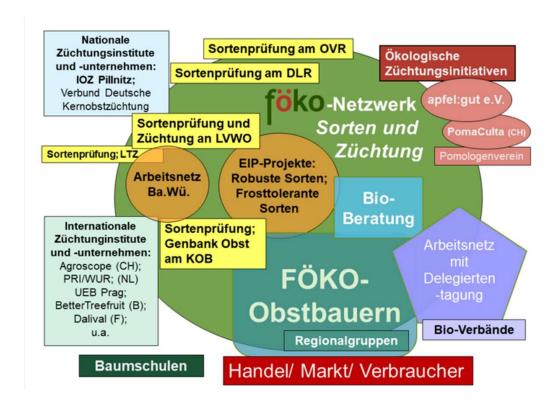
- · Sehr wichtig aind ein ruhiger Baum und die entagrechenden Erziehungsmaßnahmen (Sommerschnitt, Sommerrias)
- . Optimierung des Potentials der Förderung von Vögeln: Die sinnvolle Anzahl und die optimierung von Nistkästen in Öko-Obstanlagen wurde im Projekt "Ökologische Vielfalt in Obstanlagen" untersucht. Empfohlen werden 10 Nisthilfen pro ha siehe auch biodiv-oekoobstbau de.
- Monitoring dea Schalenwickiersgektrums in den Öko-Betrieben auf Arten, die weder von isomata[®] DLR MAX TT noch von Capex[®] 2 erfasat werden, wie z. der Rote Knosnenwickier Spilonoto conllans oder der Graue Knosnenwickier Hodus nubiforona. Wenn eine dieser Arten stärker auftritt, muss denn eine entagrechend angegeaste Strategie ausgearbeitet werden. Das Monitoring erfolgt derzeit durch die Beratung.

Current approaches to improve the strategy

Practice data including indirect methods

In the nineties: Start to test scab resistant varieties on farm

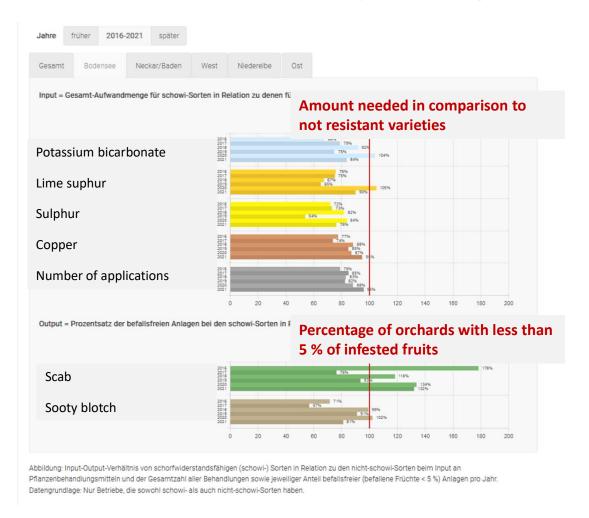
Foundation of Malus Bunda (Farmes and a nursery organisation to promote such varieties)


Introduction of TOPAZ in the market

Beginning 2000: Introduction of SANTANA

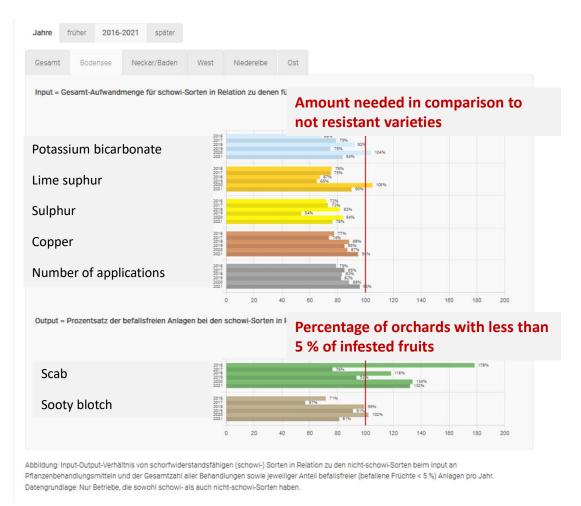
Later: FOEKO Network Varieties:

Concerted action for NATYRA



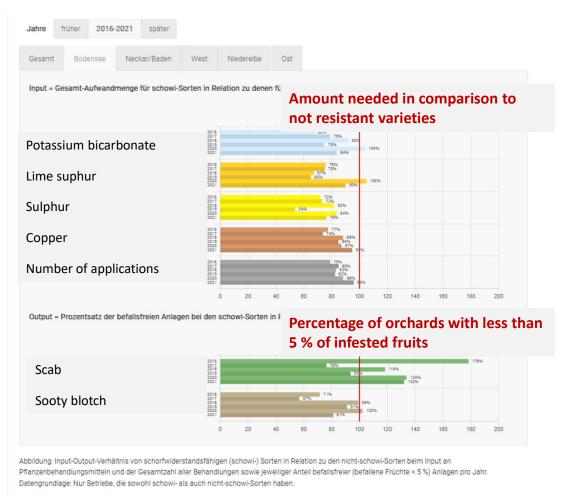
The idea was to reduce the input of fungicides using scab resistant varieties

There is a reduction but there is also a reduction of the reduction....


The scab resistance is broken, other fungal diseases as sooty blotch increase

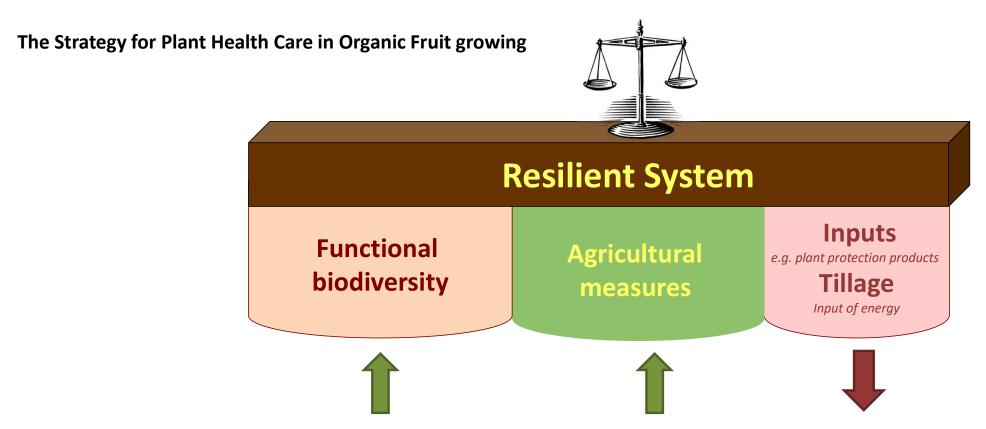
The idea was to reduce the input of fungicides using scab resistant varieties

There is a reduction but there is also a reduction of the reduction....


The scab resistance is broken, other fungal diseases as sooty blotch increase

We need more genetic biodiversity in varieties!

The idea was to reduce the input of fungicides using scab resistant varieties


There is a reduction but there is also a reduction of the reduction....

The scab resistance is broken, other fungal diseases as sooty blotch increase

We need more genetic biodiversity in varieties!

- Partecipative breeding
- Develop marketing concepts for a high variety diversity

Examples of the work in the network: Biodiversity

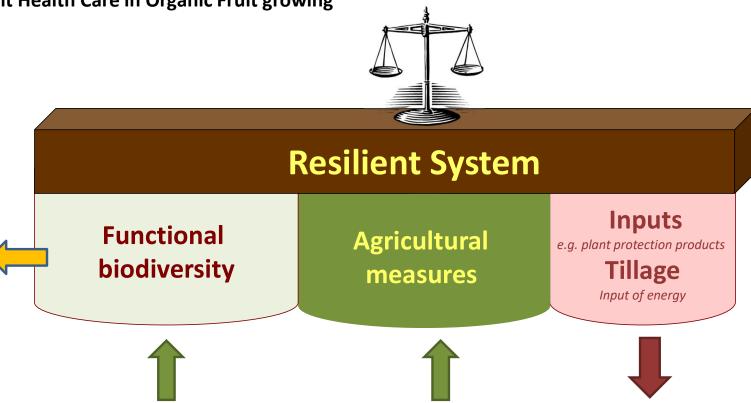
- Farming systems aim always to **reduce their dependency** of off farm inputs
- The intelligent combination of measures is responsible for the efficacy of the strategy

Examples of the work in the network: Biodiversity

The Strategy for Plant Health Care in Organic Fruit growing

Great potential for measures to enhance general species biodiversity within the production area

Chance


Bringing economy and ecology together

Challenge

Resolve technical issues to integrate such measures in the production system

Participatory approach

The organic fruitgrowers demanded to evaluate and to improve the measures for their effect on general and functional biodiversity and their feasibility in commercial organic orchards

- Farming systems aim always to reduce their dependency of off farm inputs
- The intelligent combination of measures is responsible for the efficacy of the strategy

Examples how it developed in the network: Biodiversity

From 2006 to 2010: Small Working Group in the network to discuss biodiversity measures

In 2010: Decision in the network: Professional work required!

2012-2014: Small project with few growers for weed strips in the alley

Consider effects (aphid predators) and side effects (voles!)

2016 – 2022: Project for intensive work on biodiversity measures integrated in the orchard (no loss of

production area)

Efficacy of the measures on general biodiversity

on functional biodiversity (aphid predators)

Best strategies to integrate the measures in the orchard, integrate the measures in vole

control strategies

Project " Evaluation and improvement of measures for the enhancement of biodiversity in German orchards "

"Enhancing biodiversity in organic orchards – what can we achieve?"

Jutta Kienzle, Gulmira Esenova, Alfons Krismann, Falk Eisenreich, Heinrich Maisel, Dr. Anna-Lena Rau, Martina Zimmer, Uni Hohenheim; Christina Adolphi, Bastian Benduhn, ÖON

Ecofruit Online, 22.02.2022

Project goals - evaluation of measures and their introduction into practice

- Evaluation of biodiversity effects and agronomic parameters for a standard set of measures on 16 pilot farms
 (w. 21 test sites) in 5 German fruit growing regions
- Gathering further experience on additional farms: extensive evaluation of measures, risk assessment –
 participation of currently 136 organic fruit growers with overall 2.834 ha farm area of measures

Perennial flower strips in the alleys (seeds of regional provenance)

Tall perennial flower strips at the field margin (seeds of regional provenance)

"anchor plants"
Shrubs at the end of tree rows

Provision of different **nest boxes** for wild bees and birds

Survey methods: Trial sites

Trial design on the pilot farms

Control plot

- Without wildflower strips
- mulched 4-5 times p. y.
 (= standard management)

- Size of each plot min. 1 ha
- Spatially close, but separated by min. 100 m
- Same variety

Enhanced plot

- With wildflower strips
- reduced mulching
 2-3 times p. year,
 alternating between rows

- Pilot farms
- Participants without control plot and assessment

Survey methods: On-site assessments

Biodiversity assessments:

Botanical:

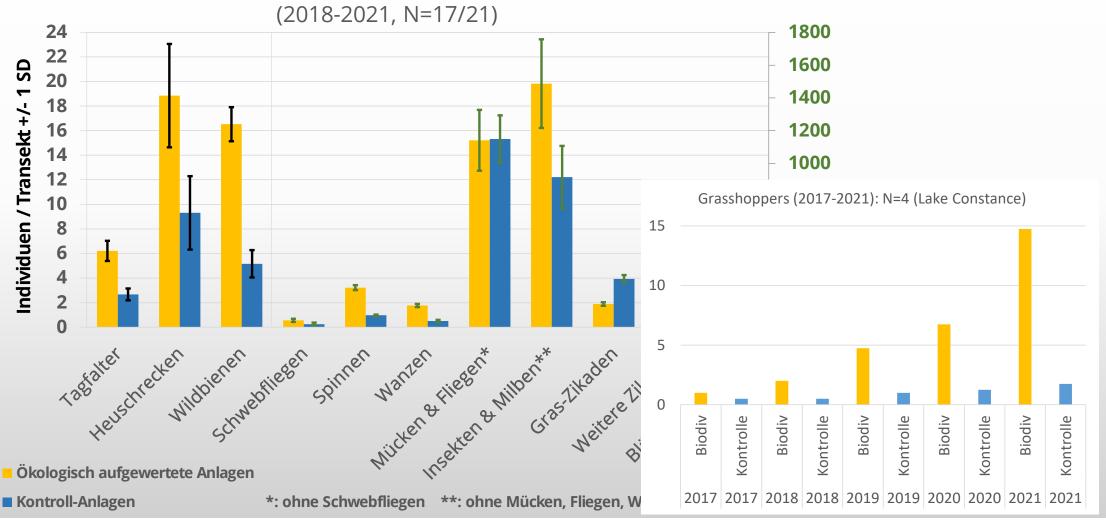
- Count of shoots in the 1st year after sowing
- Flowering phenology min. 4 times p. year

Faunistic:

- 4 x yearly sweep netting
- 2 x yearly **Malaise-Traps** (one trial site p. region)
- Transect counts for grasshoppers, butterflies and wild bees
- Occupancy of nest boxes

Agronomic assessments

- 4 x yearly **beating-tray sampling** (3 x 33 branches)
- 3 x yearly occurrence of aphids and predators on new branch shoots
- Assessment for fruit damage before fruit thinning and at harvest
- 3 x yearly assessment on occurrence and abundance of voles



Comparison of arthropod catches 2018 bis 2021 in orchards with biodiv measures and control WINIVERSITAT

Development of strategies to enhance biodiversity in the orchard

Results of the project: Catalogue of measures based on enhancement of species groups see www.biodiv-oekoobstbau.de

We have still to work to improve the management

! The production system develops more organic but also more complex!

Development of strategies to enhance biodiversity in the orchard

An important part of the development of measures to enhance biodiversity

Naturally looking fruits from a naturally cultivated orchard!

If you calculate conventional economy, you finish with conventional farming!

Include long term effects in the calculations

Include environmental and social factors in the calculation

- positive effects (e.g. biodiversity enhancement, workers welfare)
- negative effects (e.g. effects of plant protection on environment, stress for family)

Collaboration with a company that develops a model for extended calculation

Currently many models are developed for ecosystem services

Not all of them are suitable for organic or for real sustainablity......

Fördergemeinschaft Ökologischer Obstbau e.V.

What do we currently discuss in our network

Do we need completely different orchard designs?

- Variety mixtures, even fruit species mixtures
- Coverages, robotics
- Extensive orchards with animals

.....

Anlage mit Sortenmischung, LVWO Weinsberg (Foto C. König)

Agri-PV Versuchsanlage mit Blühstreifen (links, Foto J. Zimmer) und PV-Versuchsanlage am KOB Bavendorf (rechts, Foto S. Buchleither)

Hühnermobil in Apfelanlagen (Foto H. Quast)

What do we currently discuss in our network

Do we need completely different orchard designs?

- Variety mixtures, even fruit species mixtures
- Coverages, robotics
- Extensive orchards with animals

• • • • • •

The economic pressure of the market increases

- Look less for ecology and more for economy?
- Where is the limit to reduce cost intensive ecology features without losing consumers confidence?
- Find funding for ecology features
- Improve ecologic measures by participatory research

What do we currently discuss in our network

Do we need completely different orchard designs?

- Variety mixtures, even fruit species mixtures
- Coverages, robotics
- Extensive orchards with animals

• • • • • •

The economic pressure of the market increases

- Look less for ecology and more for economy?
- Where is the limit to reduce cost intensive ecology features without losing consumers confidence?
- Find funding for ecology features
- Improve ecologic measures by participatory research

Challenges we can only face together and best all over Europe!

Thank you for attention

The project PSSYSTEMBIOOBST was sponsered by BÖL

The project for biodiversity measures was sponserd by BfN with funding from BMU

aufgrund eines Beschlusses des Deutschen Bundestages

